
BMT 2016 Orthogonal Polynomials 12 March 2016

Power Round

Welcome to the power round! This year’s topic is the theory of orthogonal polynomials.

I. You should order your papers with the answer sheet on top, and you should number papers
addressing the same question. Include your Team ID at the top of each page you submit.

II. You may reference anything stated or cited earlier in the test, even if you do not understand
it. You may not reference outside sources or proofs to answers not given on the same page.

III. You have 60 minutes to answer 16 questions, cumulatively worth 100 points. Good luck!

0 Introduction

As far as I am concerned, the primary purpose of a power round is to show you, the students, what
it is like to do mathematics at the university level. I take my responsibility as a representative of
higher education very seriously, and I hope you will enjoy some “Eureka” moments during this test.
I encourage you most of all to read everything, for even unsolved problems may be understood later.

I have included a series of conceptual questions on this test that account for approximately one
quarter of all possible points. You should try to figure out the motivation behind the question and
review the recent material to determine how best to answer. If a problem does not explicitly require
demonstration of a proof or computation, you may optionally choose to supplement your answer
with either. However, if you see terms such as prove, verify, or determine, proof techniques are
required for full points. Problems with spots provided on the answer sheet require no explanation.

Think critically. A mathematician always knows exactly what she is talking about, and you may
try to do the same by paying careful attention to the definitions. A good beginning is your best
way to partial credit on the harder questions, so make sure you do know what you are talking about.

The set of natural numbers is {0, 1, 2, . . . }. A natural (number) n is an element of this set.
The set of real numbers is R. A real number c is a number found on the number line.

A polynomial is a function p, from the real numbers to the real numbers, that has the form
p(x) = anx

n + an−1x
n−1 + · · ·+ a0 for real numbers an, an−1, . . . , a0 (where an 6= 0 or n = 0) and

natural n. The degree of the polynomial is n. A root of the polynomial is a value c such that
p(c) = 0. The Fundamental Theorem of Algebra states that polynomials of degree n have at
most n roots. By convention, this test only contains polynomials with x as the parameter.

One term I use but do not define is function space. Formally, I mean a vector space (over the real
numbers) whose elements are functions sharing domain and codomain. Informally, I mean a set of
real-valued functions you can add together. Some examples of function spaces are the set of real
numbers R (i.e., the collection of constant functions from R to R), the set of polynomials P, and
the set of functions f ba of the form f ba(x) = a · ex + b · 3

√
x for some real numbers a and b.
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1 Functionals (24 pts)

All areas of mathematics have some concept of mapping crucial to development of the theory. A
function maps elements from one value to another. The domain is the set of values on which the
function is defined, and the codomain is the set of possible values into which the function maps.
The range is the precise set of values the function can achieve. The function f : [0, ∞) → R
defined by f(x) = x2 +

√
x + 1 has domain [0, ∞), codomain R, and range [1, ∞). Henceforth, we

will speak only of real-valued functions— functions whose codomain is the set of real numbers.

• A functional maps (real-valued) functions to real numbers. Its domain is a function space,
and its codomain is the set of real numbers.

• A linear functional is a functional T satisfying:

1. For all functions f and g in its domain, T(f + g) = T(f) + T(g).

2. For all real numbers c and functions f in its domain, c ·T(f) = T(c · f).

(The term function space is defined in the introduction.)

For instance, a functional Lead : P → R may take a polynomial as input and return the coefficient
of the term of highest degree, mapping (2x2 + 3x + 1) 7→ 2 and (2x2 + 3x3 + 1) 7→ 3.

1. The following functionals are linear. Use the properties of linearity to determine the answers.

(a) [1] If A(1) = 2 and A(x) = 3, find A(2x− 1).

(b) [1] If B(2x+ 1) = 0, B(2x2− 4x+ 6) = 6, and B(x3 + 7x) = 8, find B(x3 + x2 + x+ 1).

(c) [1] If C(cosx) = 4 and C(sinx) = 2
√

3, find C(sin(x + π
3 )).

(d) [1] If D(xk) = 2k − 1 for all natural k, find D((2x− 1)10).

2. For each of the following, prove the statement or provide a counterexample.

(a) [2] Every (real-valued) function is a functional.

(b) [2] Every functional is a (real-valued) function.

(c) [2] The codomain of a functional is always contained in its domain.

3. Answer each of the following questions in a clear and concise manner.

(a) [3] Why is it conventional to use codomain instead of range when defining a function?

(b) [3] Is there such a thing as an “inverse functional”? For instance, can you construct a
mapping Λ : R→ P that is an inverse to Lead? What limitations, if any, are there?

(c) [4] Consider the functional Ev2(ϕ) = ϕ(2) and the function f(x) = xy+z, where y and z
are fixed constants. Explain the difference in meaning between Ev2(f) and Ev2(xy+z).
Now, consider the function g(x) = x2 + x. Explain the difference in meaning between
Ev2(g) and Ev2(x

2 + x). Is either mistake acceptable? Is it possible to avoid this type
of mistake without separately defining a function, as done here?
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We will now restrict our attention to P, the function space of polynomial functions. For any real
numbers a < b, we define a linear functional Int[a, b] with domain P as follows.

For any natural n, Int[a, b](x
n) =

bn+1 − an+1

n + 1
.

Using the definition of linearity, we may extend this definition to all polynomials. For instance,

Int[0, 1](6x
2 + 2x + 7) = 6 · Int[0, 1](x2) + 2 · Int[0, 1](x) + 7 · Int[0, 1](1)

= 6 ·
(

13 − 03

3

)
+ 2 ·

(
12 − 02

2

)
+ 7 ·

(
11 − 01

1

)
= 2 + 1 + 7 = 10.

In fact, the definition for Int[a, b] can be extended to functions beyond just polynomials. A purely
formulaic reason for this is that well-behaved functions can be approximated very well by polynomial
functions. But for this test, it is only necessary to know how to apply the functional to polynomials.

4. (a) [1] Evaluate Int[0, 2](3x
2 + 2x).

(b) [1] Evaluate Int[1, 3](x
7 + x3).

(c) [2] Prove that for any polynomial p and real numbers a < b < c,

Int[a, b](p) + Int[b, c](p) = Int[a, c](p).

It may be useful later to note that for any real numbers a < b and polynomial p, there exists a value
c satisfying a < c < b such that Int[a, b](p) = (b− a) · f(c). This is the Mean Value Theorem.
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2 Simple Orthogonality (25 pts)

Two polynomials f and g are simply orthogonal if

Int[−1,1](f · g) = 0.

A set of polynomials is simply orthogonal if any distinct two of its elements are simply orthogonal.

5. Which of the following sets are simply orthogonal?

(a) [2] {1, x}; {1, x2}; {x, x2}; {1, x2 − 1
3}; {x

2 − 1, x3}
(b) [2] {1, x, x2}; {1, x, 3

2x
2 − 1

2}; {1, x
2 − 1, x3}; {1, x2 − 1

3 , x
3 + 2x}

6. For each of the following, find a nonzero function satisfying the given condition, or prove none
exist.

(a) [2] Find a linear polynomial simply orthogonal to each of 1, x2 − 1
3 , and x3 + 2x.

(b) [2] Find a cubic polynomial simply orthogonal to each of 1, x, and x2 − 1
3 .

A function f is symmetric if f(c) = f(−c) for all c in its domain. A function f is antisymmetric
if f(c) = −f(−c) for all c in its domain. For polynomials, the domain is all real numbers.

7. Answer the following questions on symmetric and antisymmetric polynomials.

(a) [2] Prove that if a polynomial is symmetric, then each of its terms has even degree.

(b) [2] Prove that if a polynomial is antisymmetric, then each of its terms has odd degree.

(c) [1] Prove, for any antisymmetric polynomial p, that Int[−1, 1](p) = 0.

The Legendre polynomials comprise a sequence of simply orthogonal polynomials, the nth of
which is degree n. Any one Legendre polynomial is orthogonal to any other Legendre polynomial.
They begin P0(x) = 1 and P1(x) = x and are subject to the standardization Pn(1) = 1 for all
natural n. They are uniquely determined by this definition, but an equivalent definition is

Pn+1(x) =

(
2n + 1

n + 1

)
xPn(x)−

(
n

n + 1

)
Pn−1(x) for all natural n > 0.

8. (a) [2] Compute P2(x), P3(x) and P4(x).

(b) [2] Prove that all terms of a Legendre polynomial have the same parity of degree.

(c) [2] Verify with computation or proof that P4 is orthogonal to P0, P1, P2, and P3.

9. (a) [2] Express x3 as a sum of distinct nonzero multiples of Legendre polynomials.

(b) [4] The team across the room got a different answer for part (a). Prove them wrong.

For more on Legendre polynomials, go directly to Section 4. For more on orthogonal polynomials
in general, continue to Section 3.
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3 Orthogonal Polynomials (28 pts)

More generally, orthogonal polynomials arise in a space equipped with an inner product. Inner
products are two-variable functions that are linear functionals in either variable. In particular, we
are concerned with inner products of the following form, where a and b are real numbers and w is
a polynomial that is positive throughout the interval (a, b).

〈p, q〉 = Int[a, b](p · q · w) for all polynomials p and q.

Two polynomials p and q are orthogonal if 〈p, q〉 = 0. As with Legendre polynomials, we may
construct sequences of orthogonal polynomials. Henceforth, the term orthogonal polynomials
refers to a sequence of polynomials orthogonal to each other, the nth of which is degree n. The
Gram-Schmidt process provides an immediate method of creating some orthogonal polynomials:

pn(x) = xn −
n−1∑
k=0

〈xn, pk〉
〈pk, pk〉

pk(x) for all natural n.

10. (a) [3] Prove that the Gram-Schmidt process does produce orthogonal polynomials.

(b) [3] Prove that any polynomial may be expressed as a sum of distinct nonzero multiples
of orthogonal polynomials in precisely one way.

11. Let n be a nonzero natural number.

(a) [2] Prove that 〈pn, q〉 = 0 for all polynomials q of degree less than n.

(b) [2] Prove that if p is a nonzero polynomial that is nonnegative throughout the interval
(a, b), then Int[a, b](p) > 0. (Refer to the end of Section 1 for a relevant theorem.)

(c) [4] Prove that pn(x) has precisely n distinct real roots in the interval (a, b).

In the study of orthogonal polynomials, two values assist in characterizing the relation between
different elements of the sequence. We define sequences of these values in the following way. (Recall
the functional Lead from Section 1 that returns the leading coefficient of a polynomial.)

kn = Lead(pn) and hn = 〈pn, pn〉.

12. Let {p0, p1, p2, . . . } be orthogonal polynomials.

(a) [4] Prove, for some natural n > 0 and real numbers an and bn independent of x, that

pn+1(x)− kn+1

kn
· xpn(x) = anpn(x) + bnpn−1(x).

(b) [2] Determine the value of bn in terms of hn+1, kn+1, hn, kn, hn−1, and kn−1.

13. Answer each of the following questions in a clear and concise manner.

(a) [4] Is there a choice of a, b, and polynomial w that would make the sequence of polyno-
mials {1, x, x2, x3, . . . } orthogonal with respect to the inner product described above?
Why or why not?

(b) [4] What can you say about the relationship between the roots of two distinct orthogonal
polynomials? A false response will get 0 points, while a true response will receive points
in proportion to the strength of its implications.
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4 Legendre Polynomials (23 pts)

One reason orthogonal polynomials are useful is that they are very good at approximating other
functions. In particular, they provide a solution to the least squares problem for function approxi-
mation. Note our inner product is

〈p, q〉 = Int[−1, 1](p · q) for all polynomials p and q.

Then, a Legendre approximation p of degree n (natural n) to the polynomial q is

p(x) =

n∑
k=0

〈q, Pk〉
〈Pk, Pk〉

Pk(x).

14. (a) [2] Find a Legendre approximation of degree 2 to the function f1(x) = x4.

(b) [2] Find a Legendre approximation of degree 3 to the function f2(x) = x5.

(c) [4] Find with proof a general form for the value 〈Pk, Pk〉 in terms of natural k.

15. Draw a graph of a function and one of its Legendre approximations.

(a) [4] Where is the Legendre approximation a close approximation to a function? What
value(s) in particular is (are) minimized by the Legendre approximation?

(b) [3] Prove that the Legendre approximation of degree n of a polynomial of degree n is
the polynomial itself.

Just as Legendre polynomials may be defined using a recurrence relation, they may be defined with
a series relation as well. For sufficiently small t (say, |t| < 1

2x), the following holds for all x.

∞∑
n=0

Pn(x)tn =
1√

1− 2xt + t2
.

16. (a) [3] Verify with proof the equivalence for x = 1 and x = −1.

(b) [5] Prove the following identity. For all natural n,

sin((n + 1)x)

sinx
=

n∑
k=0

Pk(cosx)Pn−k(cosx).
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