
Trees and Tree Encodings

Berkeley Math Tournament

January 22, 2018

Introduction:

Today, we are going to be looking at a special class of graph theory called trees. These structures are

an important discipline in mathematics and have wide applications in fields such as computer science and

chemistry. Conceptually, a graph H is a collection of a set of vertices (denoted V (H)) and a set of edges

(denoted E(H)) that connect them. We are working with simple graphs so only one edge can connect any

two vertices and no vertex can have an edge back to itself. In this power round, we will focus on labeled

graphs which have distinct integers 1 to n (where n is the number of vertices) associated with each vertex.

Examples are shown below:

1

2

3

4

5

6

2

3

1
6

4

5

1

2
3

4

5

6

7

In the first example above {1, 2, 3, 4, 5, 6} is the vertex set V (H), and {(1, 2), (2, 3), (2, 6), (3, 5), (1, 4), (4, 5), (5, 6), (2, 5)}
is the edge set E(H)

Definition. Two labeled graphs, G and H are isomorphic if there exists a one-to-one and onto mapping

f between the vertex sets of G and H such that if (u, v) ∈ E(G) then (f(u), f(v)) ∈ E(H) and the mapping

is label preserving (i.e u and f(u) have the same label).

A simple way to check if two graphs are isomorphic is to see if you can move the vertices of one on top

of the other such that the resulting graph preserves the labels and the edge structure. For instance, consider

the examples below:

Ex 1.
1

2

3

1

3

2

1



Ankit Agarwal Berkeley Math Tournament

The two graphs in this example are isomorphic since both graphs contains the edges (1, 3) and (1, 2), and

the labels are preserved (i.e 1 maps to 1, 2 maps to 2, and 3 maps to 3).

Ex 2.
1

3

2

3

1

2

These graphs however, are not isomorphic. While they are structurally the same (they both consist of

a vertex connected to two other vertices), the mapping is not label preserving. In graph one, the vertex in

label 1 is connected 3 and 2, whereas in the second graph it is only connected to 3.

Problem 1 [1 pt each]

Determine if the following labeled graphs are isomorphic:

A.

1

2

3

4 2

3

1
4

B.

1
2

3
4

5
6

1

2

3
4

6

5

C.

1 2 3 4

5678
1

2

3

4

5

6

7

8

Solution

(a .) It is not isomorphic. Looking at the vertex with label 1’s neighbors, we see that they are 2, 3, and 4

in the first graph but only 2 and 4 in the second graph.

Page 2



Ankit Agarwal Berkeley Math Tournament

(b.) It is not isomorphic. By counting the edges, we see that the first graph has 9 edges and the second

graph has 10 edges, so it cannot be isomorphic.

(c.) These two graphs are isomorphic.

Trees and Tree Facts

Before we get to trees, we need to present a couple of definitions.

Definition. Two vertices v1, v2 are neighbors if there exists an edge connecting them.

Definition. A path on n vertices is an ordered sequence of distinct vertices v0...vn such that for any i < n

there exists an edge between vi and vi+1. (ie there is an edge between v1 and v2, v2 and v3...etc.).

For instance the sequence of vertices corresponding to the labels {1, 2, 6, 5, 3} in the first graph of problem

1B is a path, but the sequences {1, 3, 4, 5} and {1, 4, 3, 2, 5, 3} are not.

Problem 2 [2 pts]

Find the longest path in the following graph

1

2
3

4

5

6

7

Solution

The longest path is {7, 6, 2, 3, 5} or {5, 3, 2, 6, 7} either order works.

Definition. A cycle on n vertices is a path v1...vn such that there exists an edge between the starting vertex

v1 and vn. Cycles must consist of at least 3 vertices.

An example of a cycle in the first graph of problem 1B is the sequence of vertices corresponding to the

labels {2, 3, 5}. However, the sequence {1, 2, 3, 5, 2} is not a cycle since the vertex label 2 is repeated.

Definition. A graph is connected if there exists a path between any two vertices in the graph

Definition. A tree is a graph T on n ≥ 2 vertices such that for any u, v ∈ V (T ), there exists exactly one

path from u to v.

Example. Examples of trees can be seen below:

Problem 3 [1 pt each]

Prove that

(a .) All trees are connected.

(b.) No tree contains a cycle.

Page 3



Ankit Agarwal Berkeley Math Tournament

1
2 3

4

5
6

2

3

1
6

4

5

1

2
3

4

5

6

7

Solution

Part a is true simply by the definition of connected. If there is exaclty one path between any two vertices

then there must exist a path between any two vertices, so therefore the graph is connected.

For part b, assume that there exists a cycle in the graph. Then there exists a set of vertices v1...vk such

that there is an edge between v1 and vk and v1...vk is a path. However, if this is true there exists two paths

between v1 and vk, the path v1vk, since v1 and vk share an edge and v1...vk, a contradiction since there can

only be one path between any two vertices.

Definition. The degree of a vertex is the number of distinct neighbors it has. For instance, in the first tree

above, the degree of vertex 4 is 3 and the degree of vertex 2 is 2.

Definition. A leaf (pl. leaves) of a tree is a vertex of degree 1. For instance, the leaves on the second graph

above are vertices 6 and 1.

Problem 4 [4 pts]

Prove that every tree contains at least two leaves.

Solution

Consider and the endpoints p and q in the tree’s longest path. If the endpoints of the path are not leaves,

their degree must be at least 2. If p has a neighbor n in the path, then there exists a cycle from n through p

(since they are on the longest path together) and back to n. However trees cannot have cycles, so this is a

contradiction. This means that the endpoint’s neighbor must not be on the path. However this is then not

the longest path in the graph, since the path from q through p to n is a longer path. This is a contradiction,

so therefore p must be leaf. The same reasoning can be applied to q, so the graph necessarily has 2 leaves.

Problem 5 [2 pts]

Suppose we have a tree T with n ≥ 3 vertices. Prove that after removing a leaf and its corresponding edge

from T , T is still a tree.

Solution

In T there exists exactly one path between any two vertices. We will prove that if we remove a leaf l, this

statement is still true. If a given path from v1 to v2 contains l, then either v1 = l or v2 = l, since any vertex

that is not an endpoint of a path must connect to at least two distinct vertices (namely its neighbors in the

path). Therefore, removing l does not affect whether or not T is a tree since l will not be in its vertex set

anymore. If it does not contain l, then it is not affected by its removal.

Page 4



Ankit Agarwal Berkeley Math Tournament

Counting Labeled Trees

Now that we have the definitions, we want to be able to count all of the labeled trees on n vertices where we

treat isomorphic trees the same. The number of labeled trees on two vertices is 1, since it is just the graph

below:

1 2

Likewise, the labeled trees up to isomorphism on 3 vertices are listed below:

1

2 3

2

1 3

3

1 2

We note that the label preserving distinction is important when considering labeled trees. These trees are

all structurally similar (i.e all have a vertex connected to two others), but because there are different labels

in the ’middle’ they are counted as different. However, remember that two trees with different structure are

also counted as different.

Problem 6 [3 pts]

There are 16 distinct labeled trees on 4 vertices. Draw them out! Three trees have been given to you (you

do not have to draw these out).

1

2

3

4

1

3

2

4

1

2

34

Solution

All 16 trees are shown below:

Page 5



Ankit Agarwal Berkeley Math Tournament

Prüfer Codes

Remember how we proved that every tree must have at least 2 leaves? Well, Prüfer was able to use that to

develop a recursive algorithm that equates a labeled tree on n vertices with a sequence of n− 2 integers.

Algorithm. Given a labeled tree T .

1. Find the value of the greatest labeled leaf.

2. Write down the integer label of the leaf ’s one neighbor.

3. Remove the leaf and the edge that goes with it.

4. Repeat until you reach a tree with two vertices and a single edge between them.

The sequence of written labels is the Prüfer code of the tree.

Example. In the below example, the Prüfer code is {2, 2, 6, 1}

1

26

3 5 4

Problem 7 [4 pts]

Prove that the Prüfer Code algorithm is correct. To do this show that the algorithm never gets stuck when

given a labeled tree.

Solution

To prove this, we simply need to show that at each step of the algorithm, it does not get stuck. By Problem

4, we know that we can always find two leaves in any tree. Therefore, we can find the greatest labeled leaf

since no two nodes can have the same label. So step 1 is satisfied.

Step 2 is satisfied as long as a leaf has exactly one neighbor, which is true by the definition of leaf.

Step 3 is always satisfied since removing the leaf does not change the fact that T is a labeled tree.

Additionally, removing the leaf does not change the fact that T is a tree. This is because every path that

goes through the leaf must either start at the leaf or end at the leaf. Otherwise, the node would have degree

2, a contradiction.

Finally we need to prove that the algorithm converges to a tree with two vertices and a single edge between

them. Since we know that the algorithm continually produces a tree and continually removes vertices, it is

enough to prove that the only tree on two vertices is two vertices with a single edge between them, which is

true. Therefore the algorithm never gets stuck and we are done.

Problem 8 [1 pt each]

Compute the Prüfer codes for the following trees:

Page 6



Ankit Agarwal Berkeley Math Tournament

A.
1

234 5

67

8

B. 8 2 5 4

3 7 6 1

C.
3

2
1

4

5

6

7

Solution

(a .) {6, 4, 5, 1, 1, 1}

(b.) {2, 7, 6, 5, 5, 4 }

(c.) {6, 4, 4, 2, 1}

Problem 9 [2 pts]

Prove that once the algorithm terminates, the remaining tree must contain a vertex with the label 1.

Solution

Assume for the sake of contradiction that the remaining tree did not contain the vertex 1. Then, the vertex

must have been removed in the algorithmic process. However, this only happens if the vertex is the greatest

labeled leaf. Since every tree has at least two leaves, this cannot be the case since 1 is the minimal number

on the tree. This is a contradiction.

Problem 10 [3 pts]

Let jk be the number of times the integer k (≤ n) appears in the Prüfer code. Prove that the degree of the

node with the k label is jk + 1

Solution

If the vertex corresponding to the k label is a leaf, then since the algorithm only write down the neighbors

of leaves, it cannot appear in the sequence. This satisfies the condition above since a leaf has degree 1 and

appears 0 times. If k is not a leaf, then it appears in the sequence exactly d − 1 number of times where

d is the degree of k. This is because exactly d − 1 neighbors need to be removed before it becomes a leaf.

Therefore, jk = d− 1, exactly what we wanted to prove.

Problem 11 [3 pts]

Find and prove necessary and sufficient conditions on a labeled tree T such that T has a constant Prüfer

code (such as 1111 or 222222). In other words, if T satisfies those conditions, it must have a constant Prüfer

code and if a T has a constant Prüfer code, it must satisfy those conditions.

Page 7



Ankit Agarwal Berkeley Math Tournament

Solution

We define a star to be a graph with one internal node and n− 1 leaves. We will prove that G is a star if the

internal node has label l, then the G’s Prüfer code consists of n − 2 copies of l. Since the graph is a star,

every vertex except the internal vertex is a leaf and neighbors the internal vertex. Therefore, when we apply

the algorithm to it, whenever we remove a leaf, we write down the label l. We must do this exactly n − 2

times before we can have the vertex that corresponds with the label l be a leaf. But, by this time we have

already finished the Prüfer Code. So this graph has a constant Prüfer code.

Now, going in the opposite direction, suppose G with n vertices has a constant Prüfer code with integer

labels l. Then, by problem 10, the vertex L with label l has degree n − 1. However if this is true then the

graph must be a star since if we were to add an edge between any two vertices v1 and v2, we would create a

cycle (namely {v1, v2, L}). We cannot add any edges to l since it is already connected to all other vertices.

Problem 12 [2 pts each]

Draw out the trees corresponding to the following Prüfer codes.

(a .) [1, 1, 3, 2, 4, 5]

(b.) [1, 1, 2, 2, 1, 1, 2, 2]

(c.) [6, 5, 4, 3, 1, 1, 7, 3, 1, 10]

Solution

A.
1

875

2 34

6

B.

12

34 5 6

78 910

C.

1 2

3

4

56

7 8

9

10

11

12

Problem 13 [5 pts / 2 pts]

(a .) Find a deterministic algorithm that takes a Prüfer sequence and produces the tree corresponding to

the Prüfer code. This will establish a 1-1 correspondence between the set of Prüfer codes and the set

of labeled trees. You do not need to prove that your algorithm is correct.

(b.) Prove that the number of labeled trees on n vertices is nn−2. This is known as Cayley’s theorem.

Solution

(a.) We present now the algorithm that reconstructs a tree from the Prüfer code:

Algorithm. Given a Prüfer code:

Page 8



Ankit Agarwal Berkeley Math Tournament

1. Draw the n nodes of the tree, and label them from 1 to n.

2. Make a list of all the integers (1, 2, . . . , n). This will be called the list.

3. If there are two numbers left in the list, connect them with an edge and then stop. Otherwise,

continue on to step 4.

4. Find the largest number in the list which is not in the sequence. Take the first number in the

sequence. Add an edge connecting the nodes whose labels correspond to those numbers.

5. Delete the largest number from the list and the first number in the sequence. This gives a smaller

list and a shorter sequence. Then return to step 3.

(b.) There is a 1-1 correspondence between sequences of length n−2 and the labeled trees. So we only need

to count the number of sequences. There are n choices for each of the n− 2 positions and so there are

a total of nn−2 labeled trees on n vertices.

Fleiner Codes

We now turn to a more recent paper that provided another proof of Cayley’s theorem by constructing another

graph encoding. This encoding takes advantage of another fact about trees called edge orientation. Because

a tree has no cycles, we can orient edges away from a specific vertex. In our case, we will always orient

edges away from the “1” vertex. An example is shown below:

Example. In this example, all of the edges are oriented away from the “1” vertex.

1

26

3 5 4

Because of this orientation, we can now define a function on the edges.

Definition. Given an edge e ∈ E(G), we let c(e) be the label of the vertex at the tail of e. For example in

the graph above, c({1, 2}) = 1 since the edge is oriented away from 1 and towards 2. For the remainder of

this test, you may assume the algorithm is correct and does not get stuck.

Algorithm. Given a labeled tree T with n vertices.

1. Start at the vertex with label 1.

2. Set F = {} (make it an empty sequence). This will end up becoming our Fleiner Code

3. Repeat the following loop from i = 2 up to n.

(a) Traverse the path from label 1 to label i

(b) If you traverse an edge e that you have never traversed before, add c(e) to F

4. After running the loop, the sequence F is our Fleiner Code

Example. In the above tree example, the Fleiner code is {1, 1, 6, 2, 2}

Page 9



Ankit Agarwal Berkeley Math Tournament

Problem 14 [1 pt each]

Find the Fleiner Codes of the following graphs.

A.
1

234 5

67

8

B. 8 2 5 4

3 7 6 1

C.
3

2
1

4

5

6

7

Solution

A. [1, 1, 1, 1, 5, 4, 6]

B. [1, 4, 5, 5, 6, 7, 3]

C. [1, 1, 2, 4, 4, 4]

Problem 15 [1 pt]

Prove that the first number of any tree’s Fleiner Code must be 1.

Solution

The first number of any tree’s Fleiner Code must be 1 because we start at the vertex labeled with 1 and we

must traverse to vertex 2, which would take at least 1 other vertex along the path, and since each edge is

directed away from 1, the first number of the sequence is 1.

Problem 16 [4 pts]

Find and prove necessary and sufficient conditions on a labeled tree T such that T has a Fleiner Code with

all integers distinct.

Solution

We will define a linear graph on n vertices as a tree with two leaves v1 and v2 such that the path from v1 to

v2 contains all vertices in the graph. We will prove that a graph G has a distinct Fleiner code if and only if

it is a linear graph and the vertex corresponding to label 1 is a leaf.

If G is such a graph, then since every edge is oriented away from 1 the first n − 1 vertices have exactly

one edge coming out of it. Therefore, each label can only be written down once. Since there are n− 1 edges,

n− 1 distinct vertices must be written down.

Going in the opposite direction, if G is not a linear graph with 1 as a leaf, we will prove that there must

be a repeated vertex. If G is a linear graph such that 1 is not a leaf, consider two of its neighbors with labels

Page 10



Ankit Agarwal Berkeley Math Tournament

v and w. Since both edges from 1 to v must eventually be traversed 1 will be written down twice, so the

code will not be distinct. We note that this argument applies for any graph where 1 is not a leaf.

If v with label 1 is a leaf, but G is not linear, then there exists w and l such that l is a leaf and w is not

on the path from v to l. Let p be the path from v to l and q be the path from v to w. Finally let d be the

vertex where these paths diverge. We claim that the label of d is repeated twice in the Fleiner code. We see

that d contains two edges emanating out of it, one towards w and one towards l. Since both of these edges

must be traversed, d must be written down twice. Since we have covered all conditions so we are done.

Problem 17 [8 pts]

Prove that the reverse of a labeled tree T ’s Prüfer code is the last n− 2 digits of that tree’s Fleiner code.

Solution

We shall prove this via induction. In particular, we’ll show that the first number in the Prufer code is the

last number of the Fleiner code. The first number of the Prufer code is the label of the edge connected to

the largest leaf. To do this, we shall prove the following:

Lemma. Let Pi be the set of all paths from 1 to a leaf (with respect to the oriented pointed graph). Each

vertex is contained in at least one Pi

Proof. Let vertex v be a vertex of greatest distance from 1 that is not contained in such a path. If there

v shares an edge with another vertex w and c(v, w) = v, then w has greater distance from 1 than v does

(since a tree contains no cycles). If c(v, w) = w for each w connected to v, then there is only 1 such w (since

otherwise, there would be cycles), and so v is a leaf. But there exists a path from 1 to a leaf, so this is a

contradiction. Hence the lemma.

The lemma proves that every number is contained in a path from 1 to a leaf, and thus, the last number

in the Fleiner code is the vertex connected to the largest leaf. Now take away the largest leaf and repeat the

process. Because Prufer/Fleiner codes are finite in length, our algorithm terminates. Hence the result.

Problem 18 [6 pts / 2 pts]

(a.) Find an prove a formula for the number of labeled trees on n vertices such that the distance between

vertices u and v with respective labels 1 and 2 is k. Here distance is defined to be the number of edges

in the path from u to v. The formula should be in terms of n and k only.

(b.) Calculate the number of labeled trees on 6 vertices such that the distance between vertices u with label

1 and v with label 2 is 3. Once again, distance is defined to be the number of edges in the path from

u to v.

Solution

(a.) We consider Fleiner Codes. We will start at the beginning and choose numbers that satisfy our

condition. We see that as soon as a number is repeated in the code or the number 2 is reached, that

the path from 1 to 2 has been traversed. We note that for a distance k between 1 and 2, there must

be k numbers in the Fleiner code before either a repetition or the number 2 appears.

Page 11



Ankit Agarwal Berkeley Math Tournament

The number of choices for the first vertex is 1 (it has to be 1). The number of choices for the second

vertex is n − 2 (it cannot be 1 or 2). The number of choices for the third vertex is n − 3 (it cannot

be 1, 2, or the previous vertex label). We continue this until we reach n − k, which will define the k

vertices before the repetition. We can write this out in product form as
∏k

i=2(n− i) (where the empty

product is 1).

Now we need to choose the integer that is repeated. There are k + 1 possible choices for this vertex

(namely each of the k previous labels and 2 itself).

Finally we need to choose the rest of the n − 1 − k − 1 = n − k − 2 numbers. This can be done in

nn−k−2 different ways.

Therefore our formula is
∏k

i=2(n− i) · (k + 1) · nn−k−2

(b.) We simply plug in our formula for n = 6 and k = 3 to obtain (6−2)(6−3)(3+1)(66−3−2) = 4·3·4·6 = 288

Conclusion

Trees are one of the most interesting aspects of mathematics. Yet, the mathematics that was done in this

power round is not only an integral part of Graph Theory, but also useful in real-world computer science

applications!

Sources

1. https://web.cs.elte.hu/egres/tr/egres-05-16.pdf

2. https://dcg.epfl.ch/files/content/sites/dcg/files/users/andres/GT2015/CayleyPrufer.pdf

Page 12


